Spark

Read(399) Label: sparkcli,

1. The directory containing files of this external library is: installation directory\esProcext\lib\SparkCli. The Raqsoft core jar for this external library is scu-spark-cli-3.1.2.jar.

aircompressor-0.10.jar

antlr-runtime-3.5.2.jar

antlr4-runtime-4.8-1.jar

avro-1.8.2.jar

avro-ipc-1.8.2.jar

avro-mapred-1.8.2-hadoop2.jar

chill_2.12-0.9.5.jar

commons-cli-1.2.jar

commons-codec-1.10.jar

commons-collections-3.2.2.jar

commons-compiler-3.0.16.jar

commons-configuration2-2.1.1.jar

commons-io-2.5.jar

commons-lang-2.6.jar

commons-lang3-3.10.jar

commons-logging-1.1.3.jar

compress-lzf-1.0.4.jar

guava-14.0.1.jar

hadoop-auth-3.2.0.jar

hadoop-common-3.2.0.jar

hadoop-hdfs-client-3.2.0.jar

hadoop-mapreduce-client-core-3.2.0.jar

hadoop-mapreduce-client-jobclient-3.2.0.jar

hadoop-yarn-api-3.2.0.jar

hive-cli-2.3.7.jar

hive-common-2.3.7.jar

hive-exec-2.3.7-core.jar

hive-jdbc-2.3.7.jar

hive-llap-common-2.3.7.jar

hive-metastore-2.3.7.jar

hive-serde-2.3.7.jar

hive-shims-0.23-2.3.7.jar

hive-shims-common-2.3.7.jar

hive-storage-api-2.7.2.jar

htrace-core4-4.1.0-incubating.jar

jackson-annotations-2.10.0.jar

jackson-core-2.10.0.jar

jackson-core-asl-1.9.13.jar

jackson-databind-2.10.0.jar

jackson-mapper-asl-1.9.13.jar

jackson-module-paranamer-2.10.0.jar

jackson-module-scala_2.12-2.10.0.jar

jakarta.servlet-api-4.0.3.jar

janino-3.0.16.jar

jcl-over-slf4j-1.7.30.jar

jersey-container-servlet-core-2.30.jar

jersey-server-2.30.jar

jetty-util-7.0.0.M0.jar

joda-time-2.10.5.jar

json4s-ast_2.12-3.7.0-M5.jar

json4s-core_2.12-3.7.0-M5.jar

json4s-jackson_2.12-3.7.0-M5.jar

jul-to-slf4j-1.7.30.jar

kryo-shaded-4.0.2.jar

libfb303-0.9.3.jar

libthrift-0.12.0.jar

log4j-1.2.17.jar

metrics-core-4.1.1.jar

metrics-json-4.1.1.jar

netty-all-4.1.51.Final.jar

orc-core-1.5.12.jar

orc-mapreduce-1.5.12.jar

orc-shims-1.5.12.jar

paranamer-2.8.jar

parquet-column-1.10.1.jar

parquet-common-1.10.1.jar

parquet-encoding-1.10.1.jar

parquet-format-2.4.0.jar

parquet-hadoop-1.10.1.jar

parquet-jackson-1.10.1.jar

parquet-tools-1.11.1.jar

protobuf-java-2.5.0.jar

re2j-1.1.jar

scala-library-2.12.10.jar

scala-reflect-2.12.10.jar

scala-xml_2.12-1.2.0.jar

slf4j-api-1.7.30.jar

slf4j-log4j12-1.7.30.jar

snappy-java-1.1.8.2.jar

spark-avro_2.12-3.1.1.jar

spark-catalyst_2.12-3.1.1.jar

spark-core_2.12-3.1.1.jar

spark-hive-thriftserver_2.12-3.1.1.jar

spark-hive_2.12-3.1.1.jar

spark-kvstore_2.12-3.1.1.jar

spark-launcher_2.12-3.1.1.jar

spark-network-common_2.12-3.1.1.jar

spark-network-shuffle_2.12-3.1.1.jar

spark-sql_2.12-3.1.1.jar

spark-tags_2.12-3.1.1.jar

spark-unsafe_2.12-3.1.1.jar

stax2-api-3.1.4.jar

stream-2.9.6.jar

univocity-parsers-2.9.1.jar

woodstox-core-5.0.3.jar

xbean-asm7-shaded-4.15.jar

zstd-jni-1.4.8-1.jar

 

Note: The third-party jars are encapsulated in the package and users can choose appropriate ones for specific scenarios.

 

2. Download the following four files from the web and place them in installation directory\bin:

hadoop.dll

hadoop.lib

libwinutils.lib

winutils.exe

Note: The above files are required under Windows environment, but not under Linux. There are x86 winutils.exe and x64 winutils.exe depending on different OS versions.

 

3. SparkCli requires a JRE version 1.7 or above. Users need to install a higher version if the esProc built-in JRE version does not meet the requirements, and then configure java_home in config.txt under installation directory \esProc\bin. Just skip this step if the JRE version is adequate.

 

4. Users can manually change the size of memory if the default size isn’t large enough for needs. Two ways to manage memory under Windows are available: Change the memory settings in config.txt when starting esProc through the executable file; and in the .bat file when starting the application through the batch file. Under Linux, change the memory size in the .sh file.

Below is the method of changing memory settings in config.txt under Windows:

java_home=C:\ProgramFiles\Java\JDK1.7.0_11;esproc_port=48773;jvm_args=-Xms256m -XX:PermSize=256M -XX:MaxPermSize=512M -Xmx9783m -Duser.language=zh

 

5. On the machine where esProc is installed, find the hosts file to add the IP address and hostname of the machine holding the Spark system. For example, if the IP address and hostname are 192.168.0.8 and masters respectively, here are the settings:

 

6. esProc provides four external library functions - spark_open(), spark_query(), spark_cursor() and spark_close() - to access Spark systems. Look them up inHelp-Function referenceto find their uses.